Sewer Comparison Chart:

Four Types of Common Sewer Collection Systems & Related Costs

Data from tables 4-12 and 4-16, Small and Decentralized Wastewater Management Systems, Crites/Tchobanoglous.

Data from tables 4-12 and 4-16, Small and Decentralized Wastewater Management Systems, Crites/Tchobanoglous.

Sewer Comparison Chart: Four Types of Common Sewer Collection Systems & Related Costs

		Orenco Effluent Sewer System	Gravity Sewer System	Grinder Sewer System	
On-Lot Components & Features	1	Performs primary treatment/sedimentation, allowing smaller downstream treat- ment facility	Performs no primary treatment; full waste stream with I/I is conveyed to larger treatment facility	Performs no primary treatment; full waste stream is conveyed to larger treat- ment facility	Pe
	2	Costs approximately \$3,000-\$5,000 in materials/installation for pump, septic tank, controls, excavation, and connection to network ¹	Costs approximately \$1,800-\$2,700 in materials/installation to install build- ing sewer and connect to sewer main ² , depending on terrain	Costs approximately \$4,800-\$7,200 in materials/installation to install pump, pump basin, controls, excavation, and connection to network ³	Co
	3	Residences typically require one 1000-gal. (3785-L) tank, depending on size	Residences typically require a 4-in. diameter (100-mm) service lateral at a constant slope to the mainline (see item #11)	Residences typically require a 50- to 150-gal. (189- to 567-L) on-lot pump basin	Re
	4	No need for immediate operator response in emergencies due to 24-hr emer- gency storage (> 200 gal. or 757 L) provided by on-lot tank	Immediate operator response required when sanitary sewers back-up into homes/businesses	Immediate operator response required in emergencies due to lack of emer- gency storage provided by on-lot pump basin	lmı bar
	5	Caustic chemicals and other system abuses can sometimes be identified and controlled	Caustic chemicals, other system abuses, and on-lot I/I (the main source of I/I problems in gravity sewers) are very difficult to identify and control	Caustic chemicals and other system abuses can sometimes be identified and controlled	Ca cor
	6	Costs \$7.05/mo/EDU in annual on-lot O&M ⁴	Costs \$1.33-\$2/mo/EDU in annual on-lot O&M ²	Costs \$10-\$20/mo/EDU in annual on-lot O&M ³	Co
	7	On-lot electricity costs: ~ \$1.50/mo/EDU to operate pump	No on-lot electricity costs unless lift pump required	On-lot electricity costs: ~ 3.70 /mo/EDU ³ to operate pump; many homes require costly upgrades for 230 VAC power	No
	8	Uses lightweight pumps: ~30 lb, 115 VAC, ½ hp, 10 gpm, 250 ft of head capability (~13.6 kg, 115 VAC, 0.37 kW, 0.63 L/sec, 76.2 m head capability)	If required, a variety of lift station pumps are used	Uses heavy pumps: 100+ lb, 230 VAC, 1½-2 hp, 150 ft of head capability (45+ kg, 230 VAC, 1.12-1.49 kW, 45.7 m head capability)	No
	9	Sometimes accommodates gravity (STEG) connections where terrain & hydrau- lics allow	Generally accommodates gravity connections but sometimes lift pumps are required	Always requires a pump connection	Gra
	10	Installation easily avoids conflicts with other utility services, at little or no cost, particularly with directional boring	Installation often conflicts with existing utility services, requiring costly change orders and redesigns	Installation easily avoids conflicts with other utility services, at little or no cost, particularly with directional boring	Ins par
	11	Allows inexpensive, shallowly-buried, 1-in. diameter (25-mm) service lateral for STEP, 1¼-in. diameter (30-mm) service lateral for STEG	Requires more costly 4-in. diameter (100-mm) service lateral, sometimes deeply excavated	Allows inexpensive, 11/4-in. diameter (30-mm) service lateral	Re
Mainlines	12	Uses small-diameter force mains, typically 2-in. (50-mm) diameter for small communities	Uses mainlines of 8-in. (200-mm) minimum diameter or larger	Uses small-diameter force mains, typically 2-in. diameter (50-mm) for small communities; mainline size is critical: excessive head loss if too small; frequent pigging due to low scouring velocities if too large	Use dia
	13	Costs approximately \$340,000-\$510,000 in materials/installation for 50,000 gpd (189 m ³ /day) or 200 homes ¹	Costs approximately \$2,182,000-\$3,273,000 in materials/installation for 50,000 gpd (189 m ³ /day) or 200 homes ²	Costs approximately \$344,000-\$516,000 in materials/installation for 50,000 gpd (189 m ³ /day) or 200 homes ³	Co (18
	14	Force mains follow the contour of the land and are installed in shallow (below frost depth), narrow trenches that go in quickly with limited disruption to the community	Mainlines must be laid to grade, requiring excavations as deep as 20-40 ft (6- 12 m) depending on terrain; deep & wide trenches go in slowly with significant disruption to the community	Force mains follow the contour of the land and are installed in shallow (below frost depth), narrow trenches that go in quickly with limited disruption to the community	For tior
	15	Typically installed with a trencher or directional borer	Large excavator and shoring typically required during excavation	Typically installed with a trencher or directional borer	Тур
	16	Avoids installation conflicts with existing utility services easily, at little or no cost	Installation can conflict with existing utility services, requiring costly change orders and redesigns	Installation avoids conflicts with existing utility services easily, at little or no cost	Ins
	17	Uses low-cost air-release valves	Often uses high-cost air release valves	Uses high-cost air release valves	No orc
	18	Watertight collection system is largely immune to I/I	Non-watertight collection system is plagued by I/I, significantly increasing treat- ment costs	Watertight collection system is largely immune to I/I	Wa
	19	Does not require lift stations	Often requires multiple, large lift stations costing >\$100,000 that require im- mediate alarm response, back-up power; lift station R&R costs are expensive	Often requires large, intermediate lift stations costing >\$100,000 that require immediate alarm response, and back-up power; lift station R&R costs are expensive	Re res of
	20	Inexpensive clean-outs (at terminal ends of mainlines) replace expensive manholes	Requires manholes at intersections, changes in slope or direction, and at regular intervals along lines	Inexpensive clean-outs replace expensive manholes	Ine
	21	Does not require minimum velocities to avoid deposition of solids; no pigging required	Requires minimum velocities to avoid solids deposition; due to conveyance of the full waste stream, periodic cleaning and flushing of the lines is often required	Requires minimum velocities to avoid solids deposition; due to conveyance of the full waste stream, cleaning and flushing of the lines is sometimes required	Re full
Other Notes	22	Allows smaller, energy-efficient, low-cost treatment systems – such as media	Requires larger, more energy-intensive, and higher-cost treatment facilities to	Requires larger, energy-intensive, costlier treatment facilities than effluent	Re
	22	cantly reduces solids management at treatment facility	a factor of 10 or more	to lower I/I	to
	23	Does not require influent bar screens, other traditional headworks, or full solids handling capacity	Requires influent screening, primary treatment, and full solids handling capability	Requires influent screening, primary treatment, and full solids handling capability	Re caj
		¹ WERF Fact Sheet C3: "Performance & Cost of Decentralized Unit Processes: Effluent Sewer Systems," Water Environment Research Foundation, April 2010	² WERF Fact Sheet C1: "Performance & Cost of Decentralized Unit Processes: Gravity Sewer Systems," Water Environment Research Foundation, April 2010	³ WERF Fact Sheet C2: "Performance & Cost of Decentralized Unit Processes: Pressure Sewer Systems," Water Environment Research Foundation, April 2010	5 W Sj
		⁴ Orenco Effluent Sewer Systems: Operational Cost — On-lot Components." Orenco Systems, Inc., July 2014			

Vacuum Sewer System

rforms no primary treatment; full waste stream is conveyed to larger facility

sts \$1800-\$2700 in materials/installation to install valve pit, air intake and nnection to network

quires a 10-gallon (37-L) capacity valve pit

mediate operator response required in emergencies due to potential sewer inclup into homes/businesses and possible discharge of sewage

ustic chemicals and other system abuses can sometimes be identified and ntrolled

sts \$1.33-\$2/mo/EDU in annual on-lot O&M (valve R&R)⁵

on-lot electricity required. Costs per connection \$1.66-\$3.34/mo⁵

pumps required

avity building sewer only

stallation easily avoids conflicts with other utility services, at little or no costs, rticularly with directional boring

quires more costly 3- or 4-inch (75- or 100-mm)

es 4-inch (100-mm) mainlines for smaller systems and 6-inch (150-mm) ameter mainlines for larger systems

bsts \$1,869,000-\$2,804,000 in materials and installation for 50,000 gpd 89 m3/day) or 200 homes⁵

rce mains require more precision in placement to ensure plug-flow condins. Installed in saw-tooth or zigzag configuration

pically installed with a trencher or directional boring

tallation avoids conflicts with existing utility services easily, at little or no cost

air release valves required; however, system must not have any line leaks in der to maintain the required vacuum

atertight collection system is largely immune to I/I

equires a vacuum station costing \$470,000 which requires immediate alarm sponse and back-up power, along with regular maintenance and replacement components

expensive clean-outs replace expensive manholes

quires minimum velocities to avoid solids deposition due to conveyance of I waste stream; periodic cleaning and flushing may be necessary

quires larger, energy-intensive, costlier treatment facilities than effluent wers due to solids; allows smaller treatment facilities than gravity sewer due lower I/I

quires influent screening, primary treatment, and full solids handling pability

/ERF Fact Sheet C4: "Performance & Cost of Decentralized Unit Processes: Vacuum Sewer ystems," Water Environment Research Foundation, April 2010